
Welding of non-ferrous metals is a process bottleneck for batteries, motors and electronic packaging

- Copper and gold laser welding common technical problems;
- Conventional welding (arc welding, plasma welding), brazing and other welding processes; low speed, abrasive, unstable, unable to be automated and intelligent;
- Red laser, low absorption, high thermal conductivity of the material, changes in the absorption rate at different temperatures: the need for high laser power spattering, serious porosity; the process is not stable, high defective rate;
- The low output power and high cost of the blue laser and the slow welding speed result in a large and wide molten pool, which causes the centre of the weld to collapse.

Technical Data

ltem	Parameters	Remarks	
iteiii	Farailleters	Remarks	
Laser power	Red laser waveband 3000w	Max. Supported 15000W	
	Blue laser waveband 600W	Max. Supported 3600W	
Beam quality	Red laser waveband ≤1.8m²	@25μm corediameterlaserfiber	
	Blue laser waveband focal spot size 1mmX1mm	@FF=200mm	
Beam quality	±2%	@24H	
Optical platform Scanning range	Max:12mm		
Optical platform Scanning frecuency	Max:500Hz		
Max.welding capacity	Copper:6mm	Effective welding quality	
Max.welding capacity	Max:8kW		

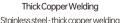
Equipment Pictures

Applications

Ultrasonic Pre-welding Of Aluminium (copper) Lugsto Lug Connecting Tabs No cracks in copper/aluminium foil around the weld seam

Electronic Control, Electronic Related Welding Applications **IGBTSoldering**

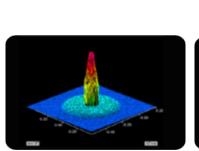
Welding Applications In **Thermal Management** Copperheat exchanger welding

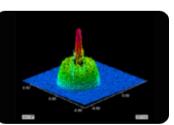


Dissimilar Metal Welding Galvanisedsheetmetal-purplecopperwelding Stainless steel-purple copper welding

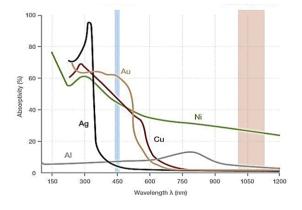
Flat Wire Winding Welding Applications For Permanent Magnet Motors Small solder joint formation and

Red and Blue Laser Hybrid Welding


NON-FERROUS METAL WELDING EXPERTS


- Combining The Advantages Of Red And Blue Lasers For Wider Material Applications.
- Greatly Increase The Absorption Rate Of Non-ferrous Metals To Improve The Utilization Rate Of Laser Energy

Technical Principles


Red and blue laser hybrid welding reduces spatter, porosity and improves weld seam forming

- Low brightness, high absorption blue light substrate heating, surface melt pool formation;
- Red and blue laser hybrid light field with enhanced infrared
- Improvement of welding temperature field, enhancement of melt pool stability, basic elimination of welding process's spatter and cavities, smooth and flat weld seam.

Blue laser absorption enhancement for solving non-ferrous solderability problems

Absorption of blue laser by common metals comparison of multiplicity of absorption by near-infrared laser light						
Material	Aluminium	Copper	Gold	Tin	304 SS	
Multiple	2.5	11.9	60.2	1.2	1.4	

- Blue laser (455nm) has a significantly higher absorption rate for non-ferrous metals than conventional 1064nm NIR lasers (copper: X12, gold: X20);
- Dramatically increased laser energy utilisation;
- The high absorption of accumulated heat overcomes the energy dissipation of the material's high thermal conductivity to achieve a molten pool;
- High absorption, low brightness + wide range of absorption coefficient consistency, stable soldering process.

